skip to main content


Search for: All records

Creators/Authors contains: "Wu, Yuanpeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To date, it has remained challenging to achieve N-polar AlN, which is of great importance for high power, high frequency, and high temperature electronics, acoustic resonators and filters, ultraviolet (UV) optoelectronics, and integrated photonics. Here, we performed a detailed study of the molecular beam epitaxy and characterization of N-polar AlN on C-face 4H-SiC substrates. The N-polar AlN films grown under optimized conditions exhibit an atomically smooth surface and strong excitonic emission in the deep UV with luminescence efficiency exceeding 50% at room temperature. Detailed scanning transmission electron microscopy (STEM) studies suggest that most dislocations are terminated/annihilated within ∼200 nm AlN grown directly on the SiC substrate due to the relatively small (1%) lattice mismatch between AlN and SiC. The strain distribution of AlN is further analyzed by STEM and micro-Raman spectroscopy, and its impact on the temperature-dependent deep UV emission is elucidated.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Interface engineering in heterostructures at the atomic scale has been a central research focus of nanoscale and quantum material science. Despite its paramount importance, the achievement of atomically ordered heterointerfaces has been severely limited by the strong diffusive feature of interfacial atoms in heterostructures. In this work, we first report a strong dependence of interfacial diffusion on the surface polarity. Near-perfect quantum interfaces can be readily synthesized on the semipolar plane instead of the conventionalc-plane of GaN/AlN heterostructures. The chemical bonding configurations on the semipolar plane can significantly suppress the cation substitution process as evidenced by first-principles calculations, which leads to an atomically sharp interface. Moreover, the surface polarity of GaN/AlN can be readily controlled by varying the strain relaxation process in core–shell nanostructures. The obtained extremely confined, interdiffusion-free ultrathin GaN quantum wells exhibit a high internal quantum efficiency of ~75%. Deep ultraviolet light-emitting diodes are fabricated utilizing a scalable and robust method and the electroluminescence emission is nearly free of the quantum-confined Stark effect, which is significant for ultrastable device operation. The presented work shows a vital path for achieving atomically ordered quantum heterostructures for III-nitrides as well as other polar materials such as III-arsenides, perovskites, etc.

     
    more » « less
    Free, publicly-accessible full text available October 31, 2024
  3. Two-dimensional (2D) hexagonal boron nitride (h-BN) is one of the few materials showing great promise for light emission in the far ultraviolet (UV)-C wavelength, which is more effective and safer in containing the transmission of microbial diseases than traditional UV light. In this report, we observed that h-BN, despite having an indirect energy bandgap, exhibits a remarkably high room-temperature quantum efficiency (∼60%), which is orders of magnitude higher than that of other indirect bandgap material, and is enabled by strong excitonic effects and efficient exciton-phonon interactions. This study offers a new approach for the design and development of far UV-C optoelectronic devices as well as quantum photonic devices employing 2D semiconductor active regions.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. Both two-dimensional (2D) transitional metal dichalcogenides (TMDs) and III–V semiconductors have been considered as potential platforms for quantum technology. While 2D TMDs exhibit a large exciton binding energy, and their quantum properties can be tailored via heterostructure stacking, TMD technology is currently limited by the incompatibility with existing industrial processes. Conversely, III-nitrides have been widely used in light-emitting devices and power electronics but not leveraging excitonic quantum aspects. Recent demonstrations of 2D III-nitrides have introduced exciton binding energies rivaling TMDs, promising the possibility to achieve room-temperature quantum technologies also with III-nitrides. Here, we discuss recent advancements in the synthesis and characterizations of 2D III-nitrides with a focus on 2D free-standing structures and embedded ultrathin quantum wells. We overview the main obstacles in the material synthesis, vital solutions, and the exquisite optical properties of 2D III-nitrides that enable excitonic and quantum-light emitters.

     
    more » « less
  5. Photocatalytic water splitting is a wireless method for solar-to-hydrogen conversion. To date, however, the efficiency of photocatalytic water splitting is still very low. Here, we have investigated the design, synthesis, and characterization of quadruple-band InGaN nanowire arrays, which consist of In 0.35 Ga 0.65 N, In 0.27 Ga 0.73 N, In 0.20 Ga 0.80 N, and GaN segments, with energy bandgaps of ∼2.1 eV, 2.4 eV, 2.6 eV, and 3.4 eV, respectively. Such multi-band InGaN nanowire arrays are integrated directly on a nonplanar wafer for enhanced light absorption. Moreover, a doping gradient is introduced along the lateral dimension of the nanowires, which forms a built-in electric field and promotes efficient charge carrier separation and extraction for water redox reactions. We have demonstrated that the quadruple-band InGaN nanowire photocatalyst can exhibit a solar-to-hydrogen efficiency of ∼5.2% with relatively stable operation. This work demonstrates a novel strategy using multi-band semiconductor nanostructures for artificial photosynthesis and solar fuel conversion with significantly improved performance. 
    more » « less
  6. Abstract

    Monolayer hexagonal boron nitride (hBN) has been widely considered a fundamental building block for 2D heterostructures and devices. However, the controlled and scalable synthesis of hBN and its 2D heterostructures has remained a daunting challenge. Here, an hBN/graphene (hBN/G) interface‐mediated growth process for the controlled synthesis of high‐quality monolayer hBN is proposed and further demonstrated. It is discovered that the in‐plane hBN/G interface can be precisely controlled, enabling the scalable epitaxy of unidirectional monolayer hBN on graphene, which exhibits a uniform moiré superlattice consistent with single‐domain hBN, aligned to the underlying graphene lattice. Furthermore, it is identified that the deep‐ultraviolet emission at 6.12 eV stems from the 1s‐exciton state of monolayer hBN with a giant renormalized direct bandgap on graphene. This work provides a viable path for the controlled synthesis of ultraclean, wafer‐scale, atomically ordered 2D quantum materials, as well as the fabrication of 2D quantum electronic and optoelectronic devices.

     
    more » « less